Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Zhu-Yan Zhang, Li-Hua Huo, Shan Gao* and Jing-Gui Zhao

Labortatory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxypyridinium-1-acetate dihydrate

The title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, exists as a betaine. The O atoms of the hydroxy and carboxylate groups of 3-hydroxypyridinium-1-acetate interact with water molecules to form a three-dimensional hydrogen-bonded supramolecular network.

Comment

Pyridine betaine and its derivatives, as zwitterions containing anionic carboxylate groups and positively charged pyridinium groups, are good proton acceptors and easily form acceptor hydrogen bonds with water molecules and hydrohalic acids (Wu \& Mak, 1995). The crystal structures of some pyridine betaine compounds have been determined to elucidate the interaction of hydrogen bonds (Chen \& Mak, 1990, 1991; Buczak et al., 1997; Gao et al., 2004). Recent studies have shown that a hydroxy-substituted pyridine betaine, which crystallizes as 1-carboxymethyl-3-hydroxypyridinium chloride-3-hydroxypyridinium-1-acetate (1/1) (Zhao et al., 2004), exists in either a zwitterionic or an uncharged configuration and involves a hydrogen-bonded chain. Our interest has been directed toward the synthesis of a metal complex based on 3-hydroxypyridinium-1-acetate; however, the reaction yielded the title organic compound, (I), whose crystal structure is reported here.

As shown in Fig. 1, the title compound, (I), also exists as a zwitterion. The $\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 1$ bond lengths are 1.2475 (18) and 1.230 (2) Å, respectively, suggesting electron delocalization (Table 1). The pyridine ring, in which bond lengths are nearly equal, is aromatic. The carboxylate group ($\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$) is twisted out of the attached pyridine ring plane, with a dihedral angle of $78.7(3)^{\circ}$. The carboxylate and hydroxy groups and the water molecules ($\mathrm{O} 1 W$ and $\mathrm{O} 2 W$) form a three-dimensional supramolecular framework via intermolecular hydrogen bonds (Table 2 and Fig. 2).

Experimental

Zinc acetate dihydrate ($3.00 \mathrm{~g}, 15 \mathrm{mmol}$) was added to an aqueous solution of 1-carboxymethyl-3-hydroxypyridinium chloride-3-hydroxypyridinium-1-acetate ($1 / 1$) ($6.86 \mathrm{~g}, 20 \mathrm{mmol}$). The mixture was stirred for 0.5 h and then filtered. Colorless crystals of (I) sepa-

Received 29 September 2005
Accepted 3 October 2005
Online 8 October 2005
rated from the solution over a period of several days. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{5}$: C 44.45, H 5.86, N 7.40%; found: $\mathrm{C} 44.49, \mathrm{H}$ 5.84, N 7.41%.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=189.17$
Triclinic, $P \overline{1}$
$a=6.9055$ (14) £
$b=7.0086$ (14) \AA
$c=10.074$ (2) \AA
$\alpha=71.62$ (3) ${ }^{\circ}$
$\beta=76.09(3)^{\circ}$
$\gamma=71.93$ (3) ${ }^{\circ}$
$V=434.34(18) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3575
reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.32 \times 0.25 \times 0.18 \mathrm{~mm}$
Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.961, T_{\text {max }}=0.978$
4289 measured reflections
1964 independent reflections
1540 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0551 P)^{2} \\
&+0.076 P] \\
& \text { where }=P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.113$
$S=1.09$
1964 reflections
133 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.2475(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.525(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.230(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3834(19)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.3301(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.4746(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.376(2)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.3369(17)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.370(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.3422(19)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.54(13)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$119.14(13)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$126.86(14)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 7$	$121.76(12)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$118.59(13)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$118.20(12)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$116.58(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.65(12)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$124.77(13)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.90(13)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$112.77(11)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2$	$120.00(12)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$120.64(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.90(14)$

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2{ }^{\mathrm{i}}$	0.86 (2)	1.87 (2)	2.704 (2)	164 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}{ }^{\text {ii }}$	0.87 (2)	2.18 (2)	2.9147 (18)	143 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\text {ii }}$	0.87 (2)	2.41 (2)	3.239 (2)	159 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1 W^{\text {iii }}$	0.86 (2)	1.87 (2)	2.725 (2)	178 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 1^{\text {iv }}$	0.86 (2)	1.94 (3)	2.785 (2)	168 (2)
$\mathrm{O} 3-\mathrm{H} 8 \cdots \mathrm{O} 2 \mathrm{~W}$	0.86 (1)	1.72 (2)	2.5764 (19)	177 (2)

organic papers

Chen, X.-M. \& Mak, T. C. W. (1991). J. Mol. Struct. 249, 135-140.
Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, J.-G., Sharifuddin M. Z. \& Ng, S. W. (2004). Acta Cryst. E60, o1006-o1008.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Wu, D.-D. \& Mak, T. C. W. (1995). J. Mol. Struct. 372, 187-193.
Zhao, H., Huo, L.-H., Gao, S., Zhang, Z.-Y., Zhao, J.-G. \& Ng, S. W. (2004). Acta Cryst. E60, o1501-1503.

